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Abstract
Tailings dam breaches (TDBs) and subsequent flows can pose significant risk to public safety, the environment, and the 
economy. Numerical runout models are used to simulate potential tailings flows and understand their downstream impacts. 
Due to the complex nature of the breach-runout processes, the mobility and downstream impacts of these types of failures 
are highly uncertain. We applied the first-order second-moment (FOSM) methodology to a database of 11 back-analyzed 
historical tailings flows to evaluate uncertainties in TDB runout modelling and conducted a sensitivity analysis to identify 
key factors contributing to the variability of the HEC-RAS model output, including at different locations along the runout 
path. The results indicate that prioritizing resources toward advancements in estimating the values of primary contributors 
to the sensitivity of the selected model outputs is necessary for more reliable model results. We found that the total released 
volume is among the top contributors to the sensitivity of modelled inundation area and maximum flow depth, while surface 
roughness is among the top contributors to the sensitivity of modelled maximum flow velocity and flow front arrival time. 
However, the primary contributors to the sensitivity of the model outputs varied depending on the case study; therefore, the 
selection of appropriate rheological models and consideration of site-specific conditions are crucial for accurate predictions. 
The study proposes and demonstrates the FOSM methodology as an approximate probabilistic approach to model-based 
tailings flow runout prediction, which can help improve the accuracy of risk assessments and emergency response plans.

Keywords  Tailings dam breach analysis (TDBA) · Numerical modelling · Runout analysis · Uncertainty analysis · 
Sensitivity analysis · FOSM · HEC-RAS 2D

Introduction

Preamble

Tailings dam breaches (TDBs) and subsequent downstream 
tailings flows can pose significant risk to public safety, the 
environment, and the economy (Blight 2009; Ghahramani 
et al. 2020; Rana et al. 2021a; Santamarina et al. 2019). 
Runout models have been used to simulate the behaviour and 
characteristics of potential tailings flows, including inunda-
tion area, runout distance, flow velocity, flow depth, and 
arrival time (Ghahramani et al. 2022; Martin et al. 2019; 
Pirulli et al. 2017). Researchers use TDB runout modelling 
to understand the complex physical mechanisms and the 
downstream impacts of tailings flows in diverse terrains, 
whereas mine owners and industry consultants rely on the 
results of TDB analyses (TDBAs) to assign consequence 
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classifications and develop emergency response plans (Cana-
dian Dam Association (CDA) 2021).

A recent benchmarking study by Ghahramani et  al. 
(2022), involving four numerical models commonly used 
in TDBAs, indicated a high level of uncertainty in model 
inputs. Some of these uncertainties were attributed to incom-
plete site-specific observational data and laboratory and in-
situ measurements, the resulting challenges associated with 
selecting proper input parameters (e.g. the estimation of 
released volume/hydrograph and the selection of rheological 
models and their associated parameters), and the subjectiv-
ity in the model calibration process. The study highlighted 
the need for additional back-analysis of historical tailings 
flows to better understand and quantify the sensitivities of 
output variables in modelling results, and the importance of 
developing a systematic probabilistic approach for runout 
analysis in TDBA practice (Ghahramani et al. 2022). The 
CDA (2021) TDBA guidelines also list additional sources 
of uncertainties in topographic data quality, failure modes, 
and triggering factors.

High levels of uncertainty in input variables (e.g. total 
released volume, rheological parameters, surface roughness, 
breach parameters) can in turn lead to high uncertainty in 

output variables (e.g. runout distance, inundation area, flow 
velocity). The uncertainty in model outputs is quantified by 
studying the distribution of possible outcomes with respect 
to the uncertainty in input parameters. This type of uncer-
tainty analysis is useful when evaluating the reliability and 
accuracy of model results and has been a practice for dec-
ades in various engineering activities, such as structural, 
geotechnical, hydraulic, aerospace, and manufacturing pro-
cesses (e.g. Baecher and Christian 2005; Burges and Letten-
maier 1975).

Identifying the dominant controls of the uncertainty in 
modelling results can help determine which inputs require 
further consideration and/or higher investments in time/
budget. One method to achieve this is a sensitivity analysis, 
the aim of which is to investigate how changes in input varia-
bles affect the output results (Borgonovo and Plischke 2016; 
Razavi et al. 2021). Uncertainty and sensitivity analyses are 
related, but have different meanings and purposes. Figure 1 
illustrates the concept of uncertainty and sensitivity meas-
ures and the distinction between them. Together, uncertainty 
and sensitivity analyses can help the modeller understand, 
enhance, and communicate the quality and reliability of the 
model outcomes to support well-informed decision-making.
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Fig. 1   Framework illustration of numerical model uncertainty and 
sensitivity analyses and distinctions between them. Box (a) displays 
a numerical model with its input and output variables. Box (b) illus-
trates the results of uncertainty analysis, which provides the distri-

bution of possible outcomes with respect to the uncertainty in input 
parameters while box c) illustrates the results of sensitivity analysis, 
which identifies the dominant controls of the uncertainty in modelling 
results
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To quantify uncertainty, probabilistic methods such as 
first-order second-moment (FOSM) (Baecher and Christian 
2005; Lee and Mosalam 2005; Llano-Serna et al. 2018; 
Kim et al. 2020; Nadim 2007) and Monte Carlo simula-
tions (MCS) (Kleijnen 1995; Razavi et al. 2021; Tonkin and 
Doherty 2009) have become popular. The FOSM method 
has been shown to be a computationally efficient tool in dif-
ferent engineering applications where more computation-
ally expensive methods, such as MCS, are not possible (e.g. 
Kunstmann and Kinzelbach 2000; Kunstmann et al. 2002; 
Nadim 2007; Wang and Hsu 2009). This method approxi-
mates the mean and variance of a model output variable of 
interest as a function of the mean and variance of the input 
factors and their correlations (Baecher and Christian 2005). 
An advantage of the FOSM method is that it can provide the 
uncertainties of an output variable from each input variable 
separately and/or by considering all input variables together 
(Kim et al. 2020). This method has been used for uncertainty 
quantification in water quality modelling and groundwater 
modelling (Dettinger and Wilson 1981; Kunstmann and Kin-
zelbach 2000; Kunstmann et al. 2002; Wang and Hsu 2009), 
for the analysis of the probability of geotechnical failure and 
potential consequences (Baecher and Christian 2005; Kim 
et al. 2020; Nadim 2007), and to investigate the sensitiv-
ity of the seismic demand of a structure to potential future 
earthquakes (Lee and Mosalam 2005). This track record of 
success in related problems made the FOSM method a prom-
ising candidate to capture the uncertainty in TDB runout 
modelling in this study.

Scope and Objectives

Various hydraulic modelling and landslide runout model-
ling tools are available for TDBAs (Canadian Dam Asso-
ciation (CDA) 2021; Ghahramani et al. 2022; McDougall 
2017). The entire breach-runout process in a tailings dam 
is complex and strongly dependent on site-specific condi-
tions, and the physical mechanisms of tailings flows remain 
poorly understood. As such, simplifications are made at 
almost every stage of the model development, from the 
mathematical differential equations to the initial and bound-
ary conditions. In addition, there is uncertainty associated 
with the estimation of the model inputs. As a result, there are 
different sources of uncertainty associated with numerical 
models (Ghahramani et al. 2022; Martin et al. 2022; Pir-
ulli et al. 2017). To the best of our knowledge, only one 
recent study (Melo and Eleutério 2023) has investigated the 
sensitivity of tailings dam breach inundation mapping to 
rheological parameters through a probabilistic approach and 
those authors highlighted the lack of research on probabilis-
tic approaches, particularly for TDBAs.

To address this gap, we used a database of 11 back-
analyzed tailings flow cases to assess the uncertainties 

in TDB runout modelling using the FOSM method. The 
Hydrologic Engineering Centre’s River Analysis System 
(HEC-RAS) numerical model, developed as a publicly 
accessible tool by the U.S. Army Corps of Engineers, was 
used for the back-analysis (Adria 2022; Brunner 2020). 
The main objectives of this study were to: (1) identify the 
primary contributors to the sensitivity of key model out-
puts (inundation area, maximum flow velocity, maximum 
flow depth, and front flow arrival time) among the selected 
input variables (total released volume, yield stress, viscos-
ity, surface roughness, breach width, and breach formation 
time), (2) study the variation of sensitivity estimates along 
the flow runout path, and (3) investigate the applicability 
of the FOSM method for probabilistic runout modelling 
in prediction applications.

Methodology

The FOSM Method

The FOSM approach is a numerical probabilistic method 
in which the mean and variance of the model output vari-
ables can be estimated by the first-order approximation of 
a Taylor series expansion, using the mean and variance of 
the input variables (Baecher and Christian 2005; Nadim 
2007). If the number of uncertain input variables is n, this 
method requires either evaluating n partial derivatives of 
the performance function or performing a numerical 
approximation using evaluations at 2n + 1 points. We used 
the latter approach in this study. For an output function 
Z = f(X1,X2,…Xn), in which X1,X2,…Xn are random varia-
bles, using the first-order approximation, the mean, μz, and 
variance, σz2, of the function Z, become:

where: �Xi
 and �Xi

 2 are the means and the variances of 
model inputs for i = 1, 2,… , n , n is the number of inputs, 
and COV(Xi,Xj) is the covariance between input variables 
XiandXj . If it is assumed that the variables are uncorre-
lated, the second term on the right side of Eq. 2 vanishes 
(Baecher and Christian 2005; Nadim 2007).

Although FOSM is a linearization technique, it can be 
applied to models with non-linear output functions. The 
FOSM method linearizes the non-linear output function by 
approximating it as a Taylor series expansion around the 
mean values of the input variables. Therefore, it assumes 
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that the output can be locally approximated as a linear 
function near the mean values of the input variables (Lee 
and Mosalam 2005).

Output Variables

The output variables of TDB runout modelling represent the 
simulated characteristics of the tailings flow downstream 
of the breach. For a FOSM analysis, four main outputs are 
studied: inundation area, maximum flow velocity, maximum 
flow depth, and flow front arrival time. The output values of 
the last three variables are measured at 50% of the observed 
Zone 1 runout distance, which is defined as “the extent of 
the main solid tailings deposit, which is characterized by 
remotely visible or field-confirmed sedimentation, above 
typical bankfull elevations if extending into downstream 
river channels” (Ghahramani et al. 2020).

Input Variable Statistics

In this study, the following six input variables were selected: 
total released volume, yield stress, viscosity, surface rough-
ness, breach width (considering a trapezoidal breach shape), 
and breach formation time. Detailed definitions of breach 
geometry and breach formation time are provided in Wahl 
(1998) and Froehlich (2008). The conventions are adopted 
from water-retaining dam breach practice, as they were 
found to be generally suitable for tailings dam breaches by 
Adria et al. (2023a). Breach formation time is only used 
for erosional breach case studies that typically involve over-
topping or piping/seepage with a relatively large volume of 
supernatant pond and a long breach duration. In reality, some 
of these inputs might be correlated (e.g. a wider breach can 
release more tailings and higher yield stress values are typi-
cally associated with higher viscosity values). However, in 
the HEC-RAS numerical model, the six selected inputs are 
formulated independently and are manually assigned, and 
therefore are not correlated. In other words, adjusting the 
breach width value in HEC-RAS does not affect the value 
for the outflow volume, or adjusting the yield stress value 
does not affect the viscosity value. Input variables that can 
be correlated to other inputs in the HEC-RAS model, such 
as solid concentration, were not considered in this study. 
For example, as part of the quadratic rheology within the 
numerical model, yield stress and viscosity are both a func-
tion of solid concentration. The best-fit (calibrated) input 
values that are estimated in the case study back analyses 
(described in the “Tailings flow back-analyses” section) are 
set to be the mean of the model inputs ( �Xi

) and their output 
results are represented by the mean values ( �Z) of the model 
outputs. Other programs or modelling tools used in TDBAs 
may treat input values differently than HEC-RAS.

There are two ways to estimate the variance, �2

Z
 , of the 

output function Z: i) if the function f(X1,X2,…Xn) is tractable, 
the function can be differentiated to give a closed-form 
expression for the variance of f(X1,X2,…Xn) or ii) more com-
monly, it is not possible to differentiate the function directly; 
therefore, the partial derivatives must be obtained through 
numerical approximation approaches (Baecher and Christian 
2005). In this application, since the form of function Z is 
unknown, the second approach is used to approximate the 
partial derivatives with the central differences method. To 
find the partial derivative for each best-fit input variable, the 
best-fit input value is increased and decreased by a small 
increment (± 10% was used in this study), while the rest of 
the variables are kept constant. The differences between the 
resulting output values are then calculated and divided by 
the differences between the increased and decreased input 
values. This can be represented mathematically as follows:

where �i is ± 10% of the best-fit value for the particular input.
To compute Eq. 2, an estimate of the variance of the 

model inputs is also needed. To achieve this, the standard 
deviation and the mean values of selected variables were 
estimated statistically using data from available databases. 
For the total released volume and breach width, data from 41 
TDB cases and 36 TDB cases, respectively, were collected 
from Rana et al. (2021b). Since the total released volume is 
a portion of the total impoundment volume, the ratio of the 
total released volume to the total impoundment volume was 
used to estimate of the mean and standard deviation. For the 
breach width statistics, the top breach width data from Rana 
et al. (2021b) were used, and for the FOSM analysis, the side 
slopes were kept constant. For the surface roughness, 74 data 
points from Chow (1959) were used. For the breach for-
mation time statistics, 27 water retaining dam failures were 
compiled from Wahl (1998) and Wahl (2014). Ghahramani 
et al. (2022) and Adria (2022) showed that the numerical 
rheological parameter values do not necessarily correspond 
with the measured rheological parameter values. However, 
in the absence of sufficient calibrated yield stress and viscos-
ity data from the numerical back-analysis of historical cases, 
a tailings rheology database from Martin et al. (2022) was 
used as a first order approximation for estimating the mean 
and standard deviation of rheological parameters. Using the 
rheology database, the yield stress and viscosity data were 
classified with respect to the volumetric solid concentra-
tion ranges and their means and standard deviations were 
estimated for each range. Then, the coefficients of varia-
tion (CoV) of input variables were calculated as the ratio 
of their standard deviation to their mean values. Tables 1, 
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2, 3 present the input variables with their estimated CoV 
values. A greater CoV indicates greater dispersion around 
the mean value. Finally, the standard deviation of a model 
input can be estimated for each case study individually, by 
multiplying the best-fit value (mean) of the model input and 
estimated CoVs.

Sensitivity and Uncertainty Estimates of Model 
Outputs

A type of sensitivity analysis can be carried out using 
differentiation-based methods (Borgonovo and Plischke 

2016). The FOSM methodology enables estimation of the 
gradient of the output variables with respect to the input 
variables, due to small local changes in model inputs. 
Therefore, the partial derivatives in Eq. 2 become natu-
ral sensitivity estimates. Since the partial derivative of 
each input has different units from one another, we use 
the equation provided by Borgonovo and Plischke (2016), 
in which the sensitivity measures (Di) are normalized 
and can be ranked (Eq. 4). The result of this sensitivity 
analysis can be used to identify the primary contributors 
to the uncertainty in model outputs. The uncertainty meas-
ure (CoVZ) of each output is estimated as the ratio of the 
standard deviation to the mean value, which is called the 
coefficient of variation of the output variable (Eq. 5).

where Xi is the input variable and n is the number of inputs. 
This fraction quantifies how the resulting output value 
changes with a particular input variable relative to the total 
change in the output variable.

where �Z and �Z are the standard deviation and mean of 
model output, respectively. The estimated standard devia-
tion and mean of each output are obtained from the FOSM 
results.

In this study, the sensitivity analysis was divided into 
two parts. For the first part, the 50% runout distance of 
Zone 1 was selected for all local model sensitivity esti-
mates as a consistent relative location to compare all 
events for maximum flow velocity, maximum flow depth, 
and flow front arrival time. For the second part, the varia-
tion of sensitivity estimates was investigated at 10%, 25%, 
50%, 75%, and 90% of the Zone 1 runout distance.
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Table 1   Coefficient of variation (CoV) values for the selected input variables

a The ratio of the total released volume to the total impoundment volume
b The breach formation time is normalized by the breach height similar to the mean erosion rate in Walder and O’Connor (1997)

Input parameter Mean Standard deviation CoV Sample size References

Total released volumea (%) 36 25 0.7 41 Rana et al. (2021b)
Roughness (s/m1/3) 0.06 0.05 0.8 74 Chow (1959)
Yield stress (Pa) 36–297 74–127 0.4–2.1 See Table 2 Martin et al. (2022)
Viscosity (Pas) 0.27–1.6 0.1–2.4 0.4–1.5 See Table 3 Martin et al. (2022)
Breach width (m) 218 269 1.2 36 Rana et al. (2021b)
Breach formation timeb (m/h) 31 29 0.9 27 Wahl 1998 and Wahl 2014

Table 2   Coefficient of variation (CoV) values for the yield stress with 
respect to volumetric solid concentration (Cv)

Data extracted from the database in Martin et al. (2022)

Parameter Cv range (%) Sample size CoV

Yield stress 10–19.9 21 0.9
20–29.9 73 1.6
30–39.9 121 2.1
40–49.9 59 1.6
50–59.9 49 1.5
60–69.9 10 0.4

Table 3   Coefficient of variation (CoV) values for the viscosity with 
respect to volumetric solid concentration (Cv)

Data extracted from the database in Martin et al. (2022)

Parameter Cv range (%) Sample size CoV

Viscosity 10–19.9 7 0.6
20–29.9 31 0.9
30–39.9 59 1.5
40–49.9 17 1.2
50–59.9 5 0.4
60–69.9 – –
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Tailings Flow Back‑Analysis

HEC‑RAS 2D

HEC-RAS is an open-access software package that was 
originally developed by the U.S. Army Corps of Engineers 
(USACE) for water resource engineering and open-channel 
hydraulic analysis (Adria 2022; Brunner 2020; Gibson et al. 
2021, 2022). HEC-RAS 2D is a depth-integrated two-dimen-
sional model that uses the finite volume numerical method. 
It is capable of dam breach-runout modelling, erosion and 
sediment transport simulations, and water quality analyses 
(Brunner 2020). Version 6.1 of HEC-RAS 2D (the most 
current version at the time of this work) was used in this 
work due to its popular application in dam breach-runout 
modelling and flood risk management studies, and its dem-
onstrated capability of modelling both Newtonian and non-
Newtonian flow types (Adria 2022; Brunner 2020; Gibson 
et al. 2021). There are four selectable options of rheologi-
cal models for non-Newtonian flow simulations: Bingham, 
Quadratic, Herschel-Bulkley, and Voellmy.

Back‑Analyzed Case Studies

The back-analyses of the 11 historical cases that we used 
as baseline models in the FOSM analysis are detailed in 
Adria (2022). The original database is provided in an 
open-access data repository hosted at Borealis (Adria et al. 
2023b). These cases are selected based on the availability 
of information on the pre-and post-failure site and tailings 
characteristics. Classifying the case studies based on the 
type of breach process (CDA 2021), there are three ero-
sional breach and eight non-erosional breach case studies 
(Table 4). Overtopping and piping/seepage type of fail-
ure mechanisms commonly involve an erosional breach 
process with a relatively large volume of supernatant 
pond and a long breach duration, from several minutes to 

hours. The non-erosional breach processes involve near-
instantaneous collapses and have characteristics other than 
the erosional breaches mentioned above (CDA 2021). In 
Table 4, the Tapo Canyon Event 1 refers to the viscous 
section of the Tapo Canyon tailings flow and the Cadia 
Event 2 refers to the secondary liquefaction event, which 
occurred on March 11, 2018; more details are provided in 
Adria (2022).

The topographic data used in the models consisted of 
a mix of publicly available and commercial sources, with 
additional manual modifications as needed. The breach char-
acteristics and outflow volumes for each event were previ-
ously compiled in Adria (2022), Ghahramani et al. (2020), 
and Rana et al. (2021a). The yield stress and viscosity in the 
quadratic rheological model were calibrated in two steps. 
First, the modelled inundation area was compared to the 
observed inundation area as mapped by Ghahramani et al. 
(2020) and Rana et al. (2021a) using a quantitative method 
developed by Heiser et al. (2017). The modelled results 
were then compared to available observations of arrival 
time and runout depth within the inundation area to further 
refine the calibrated yield stress and viscosity. The quadratic 
rheological model as implemented in HEC-RAS also uses a 
third term that relates shear stress to strain-rate squared, to 
simulate dispersive effects. The coefficient for the dispersive 
term is calculated with a combination of theoretical, empiri-
cal, and measurable sediment characteristics (e.g. particle 
diameter). Only the particle diameter was varied in Adria 
(2022) based on available data for each event. The calcu-
lated dispersive coefficients between all events ranged from 
1.1 × 10–5 to 6.1 × 10–2, which aligns with the findings of 
Julien and Lan (1991). The surface roughness was defined 
with spatially varied Manning’s n values based on the land 
cover observed on satellite/aerial imagery, as well as guid-
ance in Arcement and Schneider (1989) and Janssen (2016), 
but it was not adjusted as part of the calibration process. The 
best-fit model inputs and outputs are presented in Table 5.

In the FOSM analysis, as described earlier, the number 
of evaluation points is 2n + 1 (where n is the number of 
model inputs) when the numerical approximation method 
is used. Considering the five and six inputs for non-erosional 
and erosional breach case studies, respectively, each non-
erosional breach case study was run 11 times, and each 
erosional beach case study was run 13 times. Therefore, in 
total, there were 127 evaluation points for all 11 case studies. 
Refer to Supplementary Appendix A for all of the performed 
runs.

To investigate the variation of sensitivity estimates along 
the flow runout distance, three case studies were selected 
(1985 Stava, 1998 Aznalcóllar, and 2019 Feijão). These 
cases were selected because they have different released 
volumes, breach processes, and topographic conditions, and 
therefore the magnitude and runout path of these three cases 

Table 4   Database of 11 back-analyzed tailings dam breaches (TDBs)

ID TDB case Country Year Breach process

1 Stava Italy 1985 Non-erosional
2 Tapo Canyon Event 1 USA 1994 Non-erosional
3 Merriespruit (Harmony) South Africa 1994 Non-erosional
4 Aznalcóllar (Los Frailes) Spain 1998 Erosional
5 Ajka (Kolontar) Hungary 2010 Erosional
6 Kayakari Japan 2011 Non-erosional
7 Mount Polley Canada 2014 Erosional
8 Fundão Brazil 2015 Non-erosional
9 Tonglvshan China 2017 Non-erosional
10 Cadia Event 2 Australia 2018 Non-erosional
11 Feijão Brazil 2019 Non-erosional
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represent diverse morphological environments (see Tables 4 
and 5).

Probability Distribution Approximation 
for Prediction

The FOSM method provides estimates of the mean and 
standard deviation of the model outputs, which can be used 
to make probabilistic forward predictions. However, since 
the probability distributions of the inundation area, maxi-
mum flow velocity, maximum flow depth and frontal arrival 
time are unknown and are not obtained directly through the 
FOSM method, assumptions must be made. Normal and log-
normal approximations are typically used in geotechnical 
problems (Kim et al. 2020; Nadim 2007). The log-normal 
approximation is also considered reasonable in this applica-
tion, as a first approximation. It is used instead of the normal 
distribution because the model input parameters cannot be 
negative.

The Merriespruit case was used in this study to demon-
strate the application of the FOSM method for predicting the 
probability of model outputs. Following Aaron et al. (2022), 
we excluded any site-specific information about the breach 
geometry, rheological parameters and observational data for 
the numerical modelling. The Merriespruit case was also 
excluded from the TDB calibration dataset for the purposes 
of this demonstration. However, the total released volume 
was not changed so that the observed and simulated results 
could be roughly compared.

A detailed description of the Merriespruit TDB event was 
provided by Fourie and Papageorgiou (2001) and Wagener 
(1997). The estimated total released volume was 0.615 M 

m3. For the purpose of demonstrating the probabilistic 
method, we adopted a strategy of making reasonable model 
and parameter selections that an experienced TDB practi-
tioner might make. A trapezoidal breach shape with side 
slopes of 1 V:1H was used. Assuming the breach height was 
equal to the dam height (31 m), and using an average breach 
width to breach height ratio of 7 based on non-erosional 
breach data in Adria (2022), the average breach width was 
estimated to be 217 m. The topographic data source is the 
Airbus WorldDEM™ DTM with a 12 m resolution. A con-
stant surface roughness (n) of 0.08 was used throughout the 
runout path to account for both the suburban and wetland 
areas that are observed in satellite imagery and aerial pho-
tographs. The Quadratic rheological model was selected for 
this analysis. Since there is a lack of back-analyzed historical 
case studies similar to Merriespruit, which could otherwise 
inform rheological parameter selection, the yield stress and 
viscosity in the present study were estimated by fitting expo-
nential curves to the yield stress and viscosity data provided 
in Martin et al. (2022). Considering the volumetric solid 
content of 50% for Merriespruit, the yield stress and viscos-
ity were estimated as 63 Pa and 0.8 Pa s, respectively.

Results

Sensitivity and Uncertainty Estimates

Figures 2, 3, 4 and 5 illustrate the sensitivity of the mod-
elled inundation area, maximum flow velocity at 50% 
runout, maximum flow depth at 50% runout, and flow 
front arrival time at 50% runout, respectively, for each case 

Table 5   List of the best-fit input values and the best-fit modelled outputs from the back-analyses of 11 TDBs

Numbers represent case IDs given in Table 4
TRV reported total released volume, YS best-fit yield stress, V best-fit viscosity, R estimated surface roughness, TBW reported top breach width
a At the 50% observed runout distance

ID TRV (mm3) YS (Pa) V (Pa s) R TBW (m) Inundation area (m2) Max 
velocitya 
(m/s)

Max deptha (m) Arrival timea (s)

1 0.1852 3.2 1.8 0.04 220 522,608 18.23 6.25 202
2 0.0275 4000 4 0.06 145 19,136 6.57 3.84 18.8
3 0.615 200 4 0.08 150 1,021,109 2.09 1.97 249
4 6.75 2.5 0.4 0.055 84 15,419,072 1.26 3.83 12,468
5 1.2 3.2 3.2 0.04 60 7,050,620 0.82 0.58 21,010
6 0.041 250 15 0.03 50 108,094 5.98 1.93 147
7 25 2 0.02 0.04 262 2,987,242 6.16 11.29 1980
8 32.2 3 0.05 0.07 650 10,216,937 2.49 14.16 6,460
9 0.5 250 2.5 0.04 260 278,761 6.27 3.18 34.6
10 0.16 1780 562 0.02 30 103,077 5.20 4.23 36
11 9.65 400 25 0.08 560 3,700,751 5.98 9.41 679
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study. Figure 2 indicates that the inundation area was most 
sensitive to total released volume in 9 out of 11 cases, with 
the exceptions of Stava and Mt. Polley. Stava exhibited the 
greatest sensitivity to surface roughness, while Mt. Polley 
exhibited the greatest sensitivity to breach width. Yield 
stress was one of the top two contributors to the sensitivity 

of inundation area for more than half of the cases (6 out 
of 11) (Fig. 2).

Figures 3 and 4 indicate that the maximum flow veloc-
ity and maximum flow depth at 50% runout were most 
sensitive to surface roughness and total released volume, 
respectively, in 8 out of 11 cases. For flow velocity, the 

Fig. 2   Sensitivity of modelled 
inundation area with respect to 
the selected inputs
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Fig. 3   Sensitivity of modelled 
maximum flow velocity at 
50% runout with respect to the 
selected inputs
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exceptions are Cadia, Mt. Polley, and Ajka; Cadia and 
Ajka exhibit the highest sensitivity to total released vol-
ume, while Mt. Polley exhibits the highest sensitivity 
to breach width (Fig. 3). For flow depth, the exceptions 
were Stava, Mt. Polley, and Cadia; Mt. Polley and Cadia 
exhibit the highest sensitivity to breach width, while 

Stava exhibits the highest sensitivity to surface roughness 
(Fig. 4).

Figure 5 indicates that the sensitivity results for flow 
front arrival time display greater variability than the other 
model outputs. Flow front arrival time is most sensitive to 
surface roughness in 7 out of 11 cases, with the exceptions 

Fig. 4   Sensitivity of modelled 
maximum flow depth at 50% 
runout with respect to the 
selected inputs
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Fig. 5   Sensitivity of modelled 
flow front arrival time at 50% 
runout with respect to the 
selected inputs
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of Tapo Canyon, Ajka, Tonglvshan, and Cadia. Tapo Can-
yon exhibits the highest sensitivity to both total released 
volume and breach width equally, while Ajka exhibits the 
highest sensitivity to total released volume, and Tonglvs-
han and Cadia exhibits the highest sensitivity to breach 
width.

Figures 6 and 7 display the uncertainty estimates, CoV 
(coefficient of variation), values for four numerical outputs: 
inundation area, maximum flow velocity, maximum flow 
depth, and flow front arrival time at 50% of the observed 
runout distance. These values are shown for both non-
erosional breach (Fig. 6) and erosional breach (Fig. 7) case 
studies, considering the selected inputs individually as well 
as all inputs together (all). The erosional breach case studies 
include an additional input, breach formation time (BFT), 
which is not applicable for the non-erosional breach case 
studies (Fig. 7). The findings suggest that for all case studies, 
the uncertainties in the inundation area and maximum flow 
depth with respect to the total released volume exceed 10%, 
which is typically regarded as a high level of uncertainty in 
practice. The uncertainties in the maximum flow velocity 
and flow front arrival time with respect to surface rough-
ness exceed 10% for most of the case studies, specifically 
10 out of 11 and 9 out of 11, respectively. Tables containing 

sensitivity and uncertainty values are presented in Supple-
mentary Appendix B.

Sensitivity Variation Along Runout Path

Figure 8 shows the sensitivity of the modelled maximum 
flow velocity (a, b, c), maximum flow depth (d, e, f) and 
flow front arrival time (g, h, i) at 10%, 25%, 50%, 75% and 
90% of the Zone 1 runout distance for the Stava, Aznalcóllar 
and Feijão cases. Sensitivity variation is observed along the 
flow path. In most of the scenarios, the sensitivity to breach 
width tends to decrease with distance from the breach. The 
sensitivity to total released volume has an increasing trend 
in most cases, which appears to plateau in some cases. The 
sensitivity to surface roughness is largely case-dependent 
without any discernible common trend. The sensitivity to 
yield stress tends to increase with distance from the breach 
in the case of Feijão. Sensitivity values along the runout path 
are provided in Supplementary Appendix C.

Demonstration of Probabilistic Prediction Approach

The Merriespruit demonstration case involves modelling the 
probability distributions of two key parameters: the inundation 

a)

c) d)

b)

Case Studies

ll

All All

All

Fig. 6   Non-erosional breach case study coefficient of variation (CoV) 
values for four numerical outputs: a inundation area, b maximum 
flow velocity, c maximum flow depth, and d flow front arrival time at 
50% of the observed runout distance. These CoV values are presented 

with respect to the five selected inputs, namely total released volume 
(TRV), yield stress (YS), viscosity (V), surface roughness (R), and 
breach width (BW), both individually and all inputs (All) together. 
Note the different y-axis range for plot b)
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area and maximum flow velocity at 50% runout distance. 
These parameters are modelled with respect to each input vari-
able individually as well as considering the total uncertainty 
of all input variables together (Fig. 9). The mean value of the 
modelled inundation area is 1.54 km2, while the mean value of 
the modelled maximum flow velocity at 50% runout distance 
is 2.6 m/s.

Since the model outputs cannot be negative, we used the 
assumption of log-normal distribution. The observed Zone 
1 inundation area for Merriespruit was estimated to be 0.89 
km2 (Ghahramani et al. 2022), which is slightly outside of one 
standard deviation from the mean of the probability density 
curves for the inundation area, as shown in Fig. 9b. Similarly, 
the best-fit modelled maximum flow velocity at 50% of the 
runout distance was ≈ 2.1 m/s (Adria 2022), which is within 
one standard deviation from the mean of the probability den-
sity curves for maximum flow velocity, as shown in Fig. 9d.

Discussion

Sensitivity Analysis

The results of the sensitivity analysis suggest that modelled 
inundation area and maximum flow depth are most sensitive 
to total released volume, whereas modelled maximum flow 
velocity and flow front arrival time are generally most sensi-
tive to surface roughness. These findings are conceptually 
consistent with physical observations (Adria 2022; Ghah-
ramani et al. 2020) and agree with past findings that out-
flow volume is strongly correlated with inundation area and 
runout distance (e.g. Concha-Larrauri and Lall 2018; Ghah-
ramani et al. 2020; Piciullo et al. 2022; Rico et al. 2008).

With regard to identifying primary contributors to the 
sensitivity of model outputs, our results indicated similar 

a)

c) d)

b)

Case Studies

All

All All

All

Fig. 7   Erosional breach case study coefficient of variation (CoV) val-
ues for four numerical outputs: a inundation area, b maximum flow 
velocity, c maximum flow depth, and d flow front arrival time at 50% 
of the observed runout distance. These CoV values are presented 

with respect to the six selected inputs, namely total released volume 
(TRV), yield stress (YS), viscosity (V), surface roughness (R), breach 
width (BW), and breach formation time (BFT), both individually and 
all inputs (All) together. Note the different y-axis range for plot b)
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trends for most of the cases, with a few exceptions for each 
model output. For Stava, the sensitivity of all four outputs 
followed a similar pattern, with surface roughness as the 
primary contributor and total released volume and breach 
width among the top three contributors to the sensitivity 
of those model outputs. This may be attributed to the steep 
travel path at Stava, which is higher than all the other cases 
in this study.

Mt. Polley is another exception in which the model is 
highly sensitive to the breach width for the modelled inunda-
tion area, maximum flow velocity, and maximum flow depth 
(Figs. 2, 3, 4). This is likely due to the unique site conditions 
related to the Mt. Polley failure. The Zone 1 extent of Mt. 
Polley was truncated by Quesnel Lake 9 km downstream of 
the tailings facility. Without the presence of an intercepting 
water body, a hypothetical failure of similar size and compo-
sition to Mt. Polley would be expected to travel farther than 
9 km. As a result, the 50% runout distance point considered 

in this study for the Mt. Polley model may actually be more 
representative of the 5–15% range if the event was not trun-
cated by the lake. From this perspective, the Mt. Polley sen-
sitivity results for all parameters are less exceptional to the 
other events, as the Stava, Aznalcóllar, and Feijão results are 
also consistently sensitive to breach width at about 5–15% of 
their runout distances. Furthermore, for confined events like 
Mt. Polley, the sensitivity of inundation area to outflow vol-
ume is primarily driven by the runout distance, with minor 
changes in the flow width along the runout path. With the 
truncated runout distance at Mt. Polley enforcing the same 
runout distance for all sensitivity scenarios, along with a 
predominantly channelized flow path, there was physically 
little room for the inundation area to differ between input 
variations.

Another consideration for Mount Polley is that the 
released volume had a relatively low concentration of tail-
ings solids, and therefore could be reasonably approximated 

a) b) c)

d) e) f)

h) i)g)

Aznalcóllar, 1998Stava, 1985 Feijão, 2019

Fig. 8   Variation of sensitivity with distance from the breach for modelled maximum flow velocity (a, b, c), maximum flow depth (d, e, f), and 
frontal arrival time (g, h, i) in three selected case studies
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as Newtonian rather than non-Newtonian. The effect of low 
solids concentrations is implicitly included in HEC-RAS 
by using low values for the yield stress and viscosity. As 
a result, one could expect the inundation area to have low 
sensitivity to the low calibrated yield stress and viscosity 
values for Mt. Polley, which in turn increases the relative 
sensitivity of the other inputs. This rationale may apply to 
the Aznalcóllar and Ajka cases as well, which also had rela-
tively low concentrations of tailings solids.

In the case of Cadia, the modelled maximum flow veloc-
ity was most sensitive to total released volume, while the 
modelled maximum flow depth and flow front arrival time 
were most sensitive to breach width. In general, surface 
roughness acts as an external resisting force along the flow 
runout path, and typically, changing the surface roughness 

affects the modelled flow velocity and arrival time the most. 
However, this was not the case for Cadia. However, the 
breach width was one of the primary contributors to the sen-
sitivity of the modelled flow velocity, depth, and flow front 
arrival time. One possible reason might be the proximity of 
our measurement to the breach. The Cadia runout distance 
was ≈ 480 m, which is relatively short, and the sensitivity 
analysis was done at 50% of the runout distance. Tonglvs-
han is the only other case that has a similar runout distance 
to Cadia (≈ 500 m), and breach width was also one of the 
main contributors to the sensitivity of modelled maximum 
flow velocity and flow front arrival time in that case. Also, 
the Manning’s n value used for Cadia was relatively low, 
as expected for barren land (Janssen 2016). The released 
tailings had a solid concentration of ≈ 63% (Jefferies et al. 
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2019), and the calibrated yield stress and viscosity for the 
tailings were among the highest used in Adria (2022), as 
expected for a material that predominantly consisted of sol-
ids. The influence of surface roughness (external flow resist-
ance) should therefore be expected to be less consequential 
than rheology (internal flow resistance), which is observed 
for Cadia in Fig. 5. Another possible reason might be related 
to the selected rheological model. The Quadratic rheology 
was used for the back-analysis of the Cadia case but con-
sidering the high solid concentration of the Cadia tailings, 
rheological models developed for solid-dominated materials 
(e.g. Voellmy rheology) might have been more appropriate.

The FOSM results presented in this study pertain spe-
cifically to the HEC-RAS numerical model. In Ghahramani 
et al. (2022), the FOSM analysis revealed that each of the 
four models (DAN3D, MADflow, FLO-2D, and FLOW-3D) 
investigated in their study was sensitive to different input 
parameters. However, the total released volume was identi-
fied as one of the top three contributors to the sensitivity of 
modelled maximum flow velocity and depth at a specific 
location for all four models. The results of the FOSM analy-
sis conducted in this study are consistent with those findings.

Sensitivity Variation

The results in the “Sensitivity Variation Along Runout 
Path" section indicate that the sensitivity of model outputs 
to model inputs varies at different locations along the runout 
path. This is consistent with a parallel complementary study 
on the analogous problem of landslide runout that recog-
nized sensitivity variation over the extent of a landslide 
runout model (Mitchell et al. 2022). Overall, the sensitivity 
variations of the Stava, Aznalcóllar, and Feijão cases fol-
low a similar trend, except for the yield stress and surface 
roughness curves, despite the different characteristics of 
these three failures (Back-analyzed Case Studies section).

The sensitivity to breach width displays decreasing trends 
in all of the plots. The breach width has a large influence on 
the model outputs near the breach, but the influence gradu-
ally decreases with increasing runout distance (Fig. 8).

The total released volume has a major influence on all 
the model outputs at different locations along the runout 
path (> 10% sensitivity values), with an increasing trend that 
tends to plateau for some of the scenarios (e.g. Fig. 8c, f, 
g). In the case of Aznolcollar, there is a fluctuation in the 
sensitivity of modelled maximum flow velocity to the total 
released volume (Fig. 8b). This may be attributed to the local 
constriction of the runout path near a highway bridge that 
crossed the inundation area near the 50% runout location, 
where the physical constriction controls the velocity more 
than any other model outputs.

For the Feijão case, the sensitivity to the yield stress dis-
plays an increasing trend, with the highest value at 90% of 

the runout distance (the last measurement location). Model 
outputs were not sensitive to yield stress for the Stava and 
Aznalcóllar cases, which may be due to the steep travel path 
slope along the Stava creek and the low solid concentration 
of the Aznalcóllar tailings flow, respectively, nor to viscosity 
for all three cases.

Comparing the three cases, the variation in sensitivity 
to surface roughness for each model output have different 
trends. For the Stava case, the sensitivity of the modelled 
maximum flow depth to surface roughness displays an 
increasing trend in the first 25% and a decreasing trend for 
the rest. In contrast, there was a decreasing trend for the 
Aznalcóllar case and an almost flat trend for the Feijão case 
(Fig. 8d–f). These differences might be due to distinct topo-
graphic conditions, such as steep terrain, sudden elevation 
changes, or degree of confinement along the path.

In the case of Stava, the results indicate that the modelled 
maximum flow depth and front flow arrival time were most 
sensitive to breach width, while exhibiting very low to zero 
sensitivity to other inputs at the 10% of runout distance. 
This sensitivity pattern is similar to what was explained in 
Sensitivity Analysis Section for the Cadia case, suggesting 
that it may be due to the proximity of the measurement (10% 
of runout) to the breach location where the dynamic effects 
such as rapid changes in material behaviour can be signifi-
cant. When comparing the three cases, the first 10% of the 
runout distance for the Stava is less than 500 m from the 
breach while this distance is about 3 km for Aznalcóllar and 
1 km for Feijão. This sensitivity pattern changes at further 
locations along the runout path (Fig. 8d–g).

In this study, the 50% runout distance of Zone 1 was 
selected as a reference point to compare general model sen-
sitivity estimates. However, analysis of sensitivity variation 
along the path suggests that the 50% runout distance may 
not necessarily be a key location of interest in every case. 
Instead, the location for sensitivity analysis should be chosen 
based on the specific purpose of the project, particularly 
considering the locations of elements at risk.

Demonstration of Probabilistic Prediction Approach

The Merriespruit demonstration case involved modelling 
the probability distributions of two key parameters: the 
inundation area and maximum flow velocity at 50% runout 
distance. These parameters were modelled with respect to 
each input variable individually and collectively (Fig. 9). 
In order to roughly compare the predicted results with the 
observed ones, one of the main sources of uncertainty, the 
total released volume, was kept as the reported value, as 
mentioned in the Methodology section. Figure 9b, d show 
that the output results were over-predicted. The sensitivity 
analysis results in Fig. 2 showed that yield stress was the 
top contributor to the sensitivity of inundation area for more 
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than half of the cases. The over-prediction of the results 
could be due to the lower yield stress selected (63 Pa) com-
pared with the calibrated value (200 Pa) provided in the 
“Back-analyzed Case Studies” section. Another reason could 
be the over-estimation of the average breach width value for 
the simulation, compared to the reported value.

Selection of input parameters, such as total released vol-
ume, rheological parameters, and breach geometry, has been 
a challenge for tailings dam breach-runout forward analysis. 
Probability density curves can be used by practitioners and 
modellers to constrain the ranges of estimated model out-
puts. For example, modellers may use the curves to identify 
a range of values that are consistent with a certain level of 
confidence, or to identify the most likely range of values for 
the output. By doing so, the uncertainties associated with 
each input variable can be accounted for, and more accurate 
model predictions can be made.

However, the approximation methodology used to gener-
ate the probability density curves has some limitations and 
assumptions that need to be considered when interpreting the 
results. One limitation is the use of statistical distributions to 
model the uncertainty of the input variables. While this can 
be a useful approximation, it is important to recognize that 
the choice of distribution may not always accurately reflect 
the true uncertainty of the input variable. For instance, the 
assumption of log-normal distribution may not always hold, 
particularly for extreme events or rare occurrences, which 
can lead to underestimation or overestimation of the prob-
ability of such events. Thus, the probability density curves 
should be used with caution and in conjunction with other 
information and expert judgement. Modellers should also be 
aware of the limitations and assumptions of the approxima-
tion methodology, and carefully consider the potential effect 
of correlated or extreme events that may not be accurately 
captured by the probability density curves.

Limitations of the FOSM Method

Although FOSM is a linearization technique, it can be 
applied to models with non-linear output functions. The 
FOSM method linearizes the non-linear output function by 
approximating it as a Taylor series expansion around the 
mean values of the input variables. Therefore, it assumes 
that the output can be locally approximated as a linear func-
tion near the mean values of the input variables (Lee and 
Mosalam 2005). However, the FOSM method comes with 
limitations that should be considered when interpreting the 
results. It is an approximate method that only considers the 
first-order and second-moment (i.e. mean and variance), 
rather than the distribution function, of the input variables. 
Therefore, it may not work well for highly non-linear sys-
tems (Kunstmann et al. 2002). Better precision could be 
achieved by using higher-order terms from the Taylor series 

expansion. However, higher orders involve complex math-
ematics and require additional statistical information, such 
as skewness and kurtosis, which are not easy to estimate due 
to insufficient data. Another limitation is that the interac-
tion between input variables is not considered in the FOSM 
method (Baecher and Christian 2005; Nadim 2007).

In this study, the FOSM approach was applied to three 
erosional and eight non-erosional case studies. Although the 
FOSM method is versatile and can be applied to other mod-
els, the FOSM results presented in this study are specific to 
the HEC-RAS numerical model. Our interpretations provide 
valuable information about HEC-RAS performance for each 
case study. Although some similar trends were observed, 
a larger sample size would be needed to draw broader and 
more robust conclusions, particularly for the erosional 
breach cases.

Conclusions

Our study highlights the importance of understanding the 
uncertainty and sensitivity of model outputs to different 
input variables for TDB runout modelling, which can help 
improve the accuracy of risk assessments and mitigation 
strategies in industry practice. In this study, the FOSM 
methodology was applied to a database of 11 back-ana-
lyzed historical tailings flows to evaluate the uncertainties 
in TDB runout modelling. Moreover, a sensitivity analysis 
was conducted to determine the key factors contributing to 
the sensitivity of the HEC-RAS model outputs, and sensitiv-
ity variations were analyzed at different locations along the 
runout path. We also investigated the potential application 
of the FOSM method to probabilistic runout modelling in 
prediction scenarios.

Overall, the uncertainty results and sensitivity estimates 
showed similar trends in most of the cases. To be able to 
generate more reliable model results using HEC-RAS: (1) 
researchers should develop better methods to predict poten-
tial release volumes; and (2) practitioners should use expert 
judgment when estimating potential release volumes and 
surface roughness values. However, there were some excep-
tions for each model output and the primary contributors to 
the sensitivity of the model outputs varied depending on 
the case study. The Mt. Polley case, for instance, was highly 
sensitive to breach width for modelled inundation area, 
maximum flow velocity, and maximum flow depth, poten-
tially due to the site conditions and the use of the Quadratic 
rheology model, due to the relatively low solid concentration 
of the Mt. Polley tailings flow. The Cadia Event 2 was also 
sensitive to breach width for modelled flow velocity, depth, 
and flow front arrival time. The influence of surface rough-
ness was observed to be less consequential than rheology, 
potentially due to the high solid concentration of the Cadia 
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tailings and the use of the Quadratic rheology model, instead 
of other rheological models that were mainly developed for 
solid materials. These results reinforce that considering site-
specific conditions and the selection of appropriate rheo-
logical models are crucial for accurate predictions in TDB 
runout modelling.

We also found that the sensitivity variations along the 
path for the Stava, Aznalcóllar, and Feijão cases followed 
similar trends, with decreasing sensitivity to breach width 
and increasing sensitivity to total released volume for all 
three cases and increasing sensitivity to yield stress for Fei-
jão. The sensitivity of the model outputs to surface rough-
ness displayed a different trend for each case, which may 
be due to different topographic conditions along the runout 
path.

Lastly, the FOSM methodology was proposed as a proba-
bilistic approach to model-based tailings flow runout predic-
tion. A demonstration of the approach was presented to illus-
trate the potential usefulness of probability density curves in 
constraining ranges of estimated model outputs in TDBAs.
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